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Abstract: Image denoising has played an important role in face recognition. Face features are more 
associated with edge detection. However, noise reduction methods such as adaptive Wiener or 
Kalman filtering based on minimizing mean square error achieve suboptimal results but at the same 
time blur image by filtering out high frequency contents related to edge. This paper presents a 
spatial-frequency image filtering method by wavelet decomposition to achieve better edge 
preservation while reducing noise significantly. Experimental results show that the proposed 
method performs better than other adaptive filtering methods for feature extraction of face 
recognition by neural network with multilayer perceptron. 

1. Introduction 
Image face recognition (FR) has been widely used for the Internet of Things (IoT) applications 

such as smart home and smart buildings. Home automation by IoT technology has now been 
developed and implemented, where face recognition delivers a high level of security and privacy 
protection [1, 2, 3]. Generally speaking, face recognition algorithm includes five aspects: face 
images collection, images pre-process, face detection and location, face feature extraction and 
recognition [4, 5]. When face images are collected [6], noise will inevitably be added into the 
images. The added noise will influence the subsequent steps and degrade the performance of FR 
model dramatically [7, 8, 9]. Hence image denoising, which acts as an important pre-processing 
step, is required in order to obtain a good accuracy when the FR tasks are conducted with face 
feature extraction, where image features are more associated with edge detection [10]. 

Two classic and simple spatial image denoising methods are commonly used to process the noisy 
images: median filter and mean filter. Their performance of smoothing noise usually can not meet 
the requirements of high FR accuracy, due to the fact that images will be totally blurred after 
filtering. The key to denoising polluted face images is to reduce the noise while preserve the details 
related to high frequency contents and edges [11]. In order to obtain a better performance of noise 
filtering, we investigate two Minimum Mean Square Error (MMSE) based denoising methods: 
adaptive Wiener filter and Kalman filter. They both process signal in either the time domain or 
frequency domain, and their performance of denoising are generally good but can not achieve high 
FR accuracy required for security protection. In this paper, we propose a spatial-frequency image 
denoising algorithm based on wavelet decomposition to better preserve face feature with a popular 
neural network (NN) model with multilayer perceptron (MLP) trained to recognize the denoised 
face images. Some powerful strategies [12, 13, 14] have been used to train the MLP model. 

2. Algorithms 
Wiener and Kalman filtering approaches are all based on minimizing mean square error (MMSE) 

[15, 16]. The MMSE method is generally good at suppressing high error but not sensitive at low 
error values. 

2.1. Wiener Filter 

The principle of designing a Wiener filter is to find a system function ℎ(𝑛𝑛) which has the 
minimum mean square error between the output signal 𝑦𝑦(𝑛𝑛) and the desired signal 𝑑𝑑(𝑛𝑛)[17]. The 
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output signal by filtering input signal 𝑥𝑥(𝑛𝑛) is 

𝑦𝑦(𝑛𝑛) = 𝑥𝑥(𝑛𝑛) ∗ ℎ(𝑛𝑛) = ∑ ℎ(𝑚𝑚)𝑥𝑥(𝑛𝑛 −𝑚𝑚)+∞
𝑚𝑚=0                (1) 

and the error is 

𝑒𝑒(𝑛𝑛) = 𝑑𝑑(𝑛𝑛) − 𝑦𝑦(𝑛𝑛)                          (2) 
The mean square error can be written by mathematical expectation as 

                   𝐸𝐸[|𝑒𝑒(𝑛𝑛)|2] = 𝐸𝐸[|𝑑𝑑(𝑛𝑛) − 𝑦𝑦(𝑛𝑛)|2] (3) 

To minimize 𝐸𝐸[|𝑒𝑒(𝑛𝑛)|2], we have  

  𝜕𝜕𝜕𝜕�|𝑒𝑒(𝑛𝑛)|2�
𝜕𝜕ℎ𝑗𝑗

= 0                              (4) 

Thus we obtain 

                    𝒉𝒉 = 𝑹𝑹𝑥𝑥𝑥𝑥−1𝑹𝑹𝑥𝑥𝑥𝑥 (5) 
Where R is correlation function. If the cross-correlation function between the desired signal 

𝑑𝑑(𝑛𝑛) and the input signal 𝑥𝑥(𝑛𝑛), and the auto-correlation function of 𝑥𝑥(𝑛𝑛) are known, then the 
optimal solution of the Wiener filtering can be achieved. So to design a Wiener filter we need to 
estimate the desired signal 𝑑𝑑(𝑛𝑛). Estimating the desired signal thus will be the first step. The more 
accurate the estimated desired signal is, the better denoising performance the Wiener filter can 
achieve. 

2.2. Kalman Filter 
Kalman filter is based on state space, where the concept of state variable is introduced [18]. If 

𝑥𝑥𝑘𝑘 is the state variable of a system in moment 𝑘𝑘, then the state equation and measurement equation 
can be written as 

                       𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑘𝑘𝑥𝑥𝑘𝑘 + 𝜔𝜔𝑘𝑘 (6) 

  𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘                            (7) 

Where 𝑦𝑦𝑘𝑘 is observation sample, 𝜔𝜔𝑘𝑘 is system noise and define its variance matrix as 𝑄𝑄𝑘𝑘−1, 
𝑣𝑣𝑘𝑘 is observation noise and define its variance matrix as 𝑅𝑅𝑘𝑘, and state-transition matrix as 𝐴𝐴𝑘𝑘, 
observation matrix as 𝐶𝐶𝑘𝑘. The process of Kalman filtering can be expressed as follows: 

1) Calculate 𝑃𝑃𝑘𝑘′  

                       𝑃𝑃𝑘𝑘′ = 𝐴𝐴𝑘𝑘𝑃𝑃𝑘𝑘−1𝐴𝐴𝑘𝑘𝑇𝑇 + 𝑄𝑄𝑘𝑘−1 (8) 

2) Calculate gain matrix 𝐻𝐻𝑘𝑘 

                           𝐻𝐻𝑘𝑘 = 𝑃𝑃𝑘𝑘′𝐶𝐶𝑘𝑘𝑇𝑇(𝐶𝐶𝑘𝑘𝑃𝑃𝑘𝑘′𝐶𝐶𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1     (9) 

3) Compute state estimate 𝑥𝑥�𝑘𝑘 

                   𝑥𝑥�𝑘𝑘 = 𝐴𝐴𝑘𝑘𝑥𝑥�𝑘𝑘−1 + 𝐻𝐻𝑘𝑘(𝑦𝑦𝑘𝑘 − 𝐶𝐶𝑘𝑘𝐴𝐴𝑘𝑘𝑥𝑥�𝑘𝑘−1) (10) 

4) Update 𝑃𝑃𝑘𝑘 

                       𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐻𝐻𝑘𝑘𝐶𝐶𝑘𝑘)𝑃𝑃𝑘𝑘′                        (11) 

5) Repeat step 1) - 5). 
Kalman filtering method requires that the initial state first be set, and that would determine the 

time of the system when it gets stable. The performance of filtering depends on the choice of the 
parameters like state-transition matrix 𝐴𝐴𝑘𝑘, system noise 𝜔𝜔𝑘𝑘 and observation noise 𝑣𝑣𝑘𝑘. To make 
the filtering effective, it is important to estimate the initial parameters correctly. 

2.3. Wavelet Filter 
Wavelet filter is based on time-frequency analysis by frequency decomposition. Wavelet 
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decomposition is a kind of series expansion method which acts on signal 𝑓𝑓(𝑡𝑡), with scaling 
functions 𝜑𝜑𝑗𝑗,𝑘𝑘(𝑡𝑡) and wavelet functions 𝛹𝛹𝑗𝑗,𝑘𝑘(𝑡𝑡). The signal expansion equation can be written as 

             𝑓𝑓(𝑡𝑡) = ∑ 𝑐𝑐𝑗𝑗0(𝑘𝑘)𝜑𝜑𝑗𝑗0,𝑘𝑘(𝑘𝑘)𝑘𝑘 + ∑ ∑ 𝑑𝑑𝑗𝑗(𝑘𝑘)𝛹𝛹𝑗𝑗,𝑘𝑘(𝑘𝑘)∞
𝑗𝑗=𝑗𝑗0𝑘𝑘         (12) 

where, 

               𝑐𝑐𝑗𝑗(𝑘𝑘) = 〈𝑓𝑓(𝑡𝑡),𝜑𝜑𝑗𝑗,𝑘𝑘(𝑡𝑡)〉 = ∫𝑓𝑓(𝑡𝑡)𝜑𝜑𝑗𝑗,𝑘𝑘(𝑡𝑡)𝑑𝑑𝑑𝑑 (13) 

(𝑘𝑘) = 〈𝑓𝑓(𝑡𝑡),𝛹𝛹𝑗𝑗,𝑘𝑘(𝑡𝑡)〉 = ∫𝑓𝑓(𝑡𝑡)𝛹𝛹𝑗𝑗,𝑘𝑘(𝑡𝑡)𝑑𝑑𝑑𝑑                (14) 

This is the form of discrete wavelet transform (DWT), where 𝑐𝑐𝑗𝑗(𝑘𝑘) and 𝑑𝑑𝑗𝑗(𝑘𝑘) represent the 
low frequency components and high frequency components of the signal 𝑓𝑓(𝑡𝑡), respectively. Instead 
of removing all of the high frequency parts by generally low pass filtering such as Wiener and 
Kalman filtering discussed, most of the high frequency details can be preserved while noise can be 
suppressed by processing the coefficients 𝑑𝑑𝑗𝑗(𝑘𝑘) in the time-frequency wavelet domain, where the 
denoising method is advantageous over other time or frequency domain filtering methods [19, 20]. 

The basic principle of wavelet transform based denoising algorithm proposed in this paper is 
divided into two steps thresholding: at first step we obtain the wavelet coefficients of different 
scales after wavelet decomposition. The wavelet coefficients whose values are lower than the 
thresholds are considered as noise to filter out while the others are replaced by the difference 
between the coefficients and the thresholds for general denoising. We rewrite 𝑥𝑥𝑗𝑗(𝑛𝑛) as the sum of 
the original signal 𝑠𝑠𝑗𝑗(𝑛𝑛) and noise 𝑣𝑣𝑗𝑗(𝑛𝑛) at scale 𝑗𝑗 

                       𝑥𝑥𝑗𝑗(𝑛𝑛) = 𝑠𝑠𝑗𝑗(𝑛𝑛) + 𝑣𝑣𝑗𝑗(𝑛𝑛) (15) 

At this step, the thresholds are obtained from 

                         λ𝑗𝑗 =
𝜎𝜎𝑥𝑥𝑗𝑗
𝜎𝜎𝑠𝑠𝑗𝑗

 (16) 

Where 𝜎𝜎𝑠𝑠𝑠𝑠 , 𝜎𝜎𝑥𝑥𝑥𝑥 are the standard deviation of original signal 𝑠𝑠𝑗𝑗(𝑛𝑛) and noise added signal 
𝑥𝑥𝑗𝑗(𝑛𝑛), respectively. The next step is to derive an optimal denoising process. Define 𝑦𝑦𝑗𝑗(𝑛𝑛) as the 
the denoised signal, then for the thresholding filter 𝜆̂𝜆𝑗𝑗 we have 

                       𝜆̂𝜆𝑗𝑗𝑥𝑥𝑗𝑗(𝑛𝑛) = 𝑦𝑦𝑗𝑗(𝑛𝑛) (17) 

The error function is 𝑒𝑒𝑗𝑗(𝑛𝑛) = 𝑠𝑠𝑗𝑗(𝑛𝑛) − 𝑦𝑦𝑗𝑗(𝑛𝑛) and its mean square value can be expressed as 

𝐸𝐸 ��𝑒𝑒𝑗𝑗(𝑛𝑛)�2� = 𝐸𝐸 ��𝑠𝑠𝑗𝑗(𝑛𝑛) − 𝑦𝑦𝑗𝑗(𝑛𝑛)�2� = 𝐸𝐸 ��𝑠𝑠𝑗𝑗(𝑛𝑛) − 𝜆̂𝜆𝑗𝑗𝑥𝑥𝑗𝑗(𝑛𝑛)�
2
�            

                    = 𝐸𝐸�𝑠𝑠𝑗𝑗2(𝑛𝑛) − 2𝜆̂𝜆𝑗𝑗𝑠𝑠𝑗𝑗(𝑛𝑛)𝑥𝑥𝑗𝑗(𝑛𝑛) + 𝜆̂𝜆𝑗𝑗2𝑥𝑥𝑗𝑗2(𝑛𝑛)�  (18) 

To minimize the mean square error, we have 

             
∂𝐸𝐸 ��𝑒𝑒𝑗𝑗(𝑛𝑛)�2�

∂𝜆𝜆𝑗𝑗
=
∂𝐸𝐸�𝑠𝑠𝑗𝑗2(𝑛𝑛) − 2𝜆̂𝜆𝑗𝑗𝑠𝑠𝑗𝑗(𝑛𝑛)𝑥𝑥𝑗𝑗(𝑛𝑛) + 𝜆̂𝜆𝑗𝑗2𝑥𝑥𝑗𝑗2(𝑛𝑛)�

∂𝜆𝜆𝑗𝑗
 

= 𝐸𝐸�−2𝑠𝑠𝑗𝑗(𝑛𝑛)𝑥𝑥𝑗𝑗(𝑛𝑛) + 2𝜆̂𝜆𝑗𝑗𝑥𝑥𝑗𝑗2(𝑛𝑛)� = 0                       (19) 

The solution of equation (19) is    

            λ�𝑗𝑗 = 𝐸𝐸�𝑠𝑠𝑗𝑗(𝑛𝑛)�
𝐸𝐸�𝑥𝑥𝑗𝑗(𝑛𝑛)�

 (20) 

It follows 

           λ�𝑗𝑗 = �
𝐸𝐸��𝑠𝑠𝑗𝑗(𝑛𝑛)�2�

𝐸𝐸��𝑥𝑥𝑗𝑗(𝑛𝑛)�2�
 (21) 
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From equation (15), we have 

         λ�𝑗𝑗 = �
𝐸𝐸��𝑠𝑠𝑗𝑗(𝑛𝑛)�2�

𝐸𝐸��𝑠𝑠𝑗𝑗(𝑛𝑛)+𝑣𝑣𝑗𝑗(𝑛𝑛)�2�
 (22) 

Since 𝑠𝑠(𝑛𝑛) is not related to 𝑣𝑣(𝑛𝑛), we obtain the optimal wavelet filter 

          λ�𝑗𝑗 = �
𝐸𝐸��𝑠𝑠𝑗𝑗(𝑛𝑛)�2�

𝐸𝐸��𝑠𝑠𝑗𝑗(𝑛𝑛)�2+�𝑣𝑣𝑗𝑗(𝑛𝑛)�2�
= �

𝐸𝐸��𝑠𝑠𝑗𝑗(𝑛𝑛)�2�

𝐸𝐸��𝑠𝑠𝑗𝑗(𝑛𝑛)�2�+𝐸𝐸��𝑣𝑣𝑗𝑗(𝑛𝑛)�2�
= �

𝜎𝜎𝑠𝑠𝑗𝑗
2

𝜎𝜎𝑠𝑠𝑗𝑗
2 +𝜎𝜎𝑣𝑣𝑗𝑗

2  (23) 

Where the variance 𝜎𝜎𝑠𝑠𝑠𝑠2  is estimated by calculating every 5 wavelet coefficients centered on a 
sliding window at scale 𝑗𝑗 and 𝜎𝜎𝑣𝑣𝑣𝑣2 = 𝜎𝜎𝑥𝑥𝑥𝑥2 − 𝜎𝜎𝑠𝑠𝑠𝑠2   , 𝜎𝜎𝑥𝑥𝑥𝑥2  is estimated by calculating every 5 wavelet 
coefficients centered on a sliding window at scale 𝑗𝑗 after general denoising. 

3. Experiments 
In order to evaluate the performance of different denoising algorithms, experiments were 

conducted based on Matlab platform. At first, we used Wiener filter, Kalman filter and wavelet 
filter to process the noisy 1D sinusoidal signal. Then we implemented the three algorithms on 
polluted face images as well, which is a 2D spatial-frequency signal. At last, we built a simple face 
dataset and recognized the denoised face images with different signal to noise ratios (SNR). The 
face recognition experiments were implemented on Tensor Flow framework [21], with MLP model. 

3.1. Sinusoidal Signal Denoising 
We generated a sinusoidal signal whose frequency is 1Hz, and amplitude is a unit, as shown in 

figure 1(a). Then the Gaussian noise (shown in figure 1(b)) whose mean is 0 and variance is 0.05 
was added to the original sinusoidal signal. The noisy signal is shown in figure 1(c). 

 
Fig. 1 The denoising experiments on the 1D sinusoidal signal. 

Table 1 The SNR improvement results of three denoising methods implemented on 1D sinusoidal 
signal. 

Methods SNR Improvement 
Noisy signal 10.7058 - 

Wiener 14.6038 36.41% 
Kalman 21.7428 103.09% 
Wavelet 23.5383 119.86% 
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The simulation result of Wiener filtering, Kalman filtering and wavelet denoising algorithm is 
shown in figure 1(d), (e), (f), respectively. Obviously, the time-frequency wavelet analysis method 
achieves the best performance and its denoised signal is very close to the original signal. While 
Kalman filter roughly recovers the shape of sinusoidal signal but still contains a little noise. 
However, Wiener filter achieves the worst performance, where noise is reduced but residual is still 
significant. The results of SNR improvement are shown in table 1, which are in accordance with 
visual assessment. 

3.2. Face Image Denoising 
Similarly, we added the Gaussian noise image (shown in figure 2(b)) whose mean is 0, standard 

deviation is 25 to the original face grayscale image (shown in figure 2(a)) whose resolution is 
512×512. The denoising results are shown in figure 2(d), (e), (f) and the SNR improvements are 
listed in table 2. From the figures we can see that the denoising performance of Kalman filter seems 
to be better than wavelet filter. However, the Kalman method cannot deal with the noise on the edge 
which is the advantage of wavelet denoising algorithm. Wiener method has the worst performance. 
It is noted that the wavelet decomposition method achieves the best SNR improvement. 

 
Fig. 2 The denoising experiments on the 2D face image 

Table 2 The SNR improvement results of three denoising methods implemented on 2D face image. 

Methods SNR Improvement 
Polluted image 14.8712 - 

Wiener 19.6933 32.43% 
Kalman 21.5939 45.21% 
Wavelet 24.0921 62.01% 

Table 3 Hyper-parameters of the MLP model. 

Model Hyper-parameters 

Multilayer 
Perceptron 

architecture: [4096 50 30 20 4], batch size: 128, epochs: 500, optimer: 
Adam, learning rate: 0.00001, activation function: ReLU 

batch normalization 

200



 

Fig. 3 Some face samples of different postures and expressions in the dataset. 

3.3. Face Recognition 
We built a small face image dataset which contains 2000 samples for 4 people. These samples 

(such as shown in Figure 3) have different postures, expressions and illumination. Then we took 
1400 samples for training and 600 samples for testing to feed into a simple 3-layer MLP model. 
Some key hyper-parameters of the model are listed in table 3. The back propagation algorithm [22] 
was used to train the model. Since the dataset is not complicated and the resolution of the face 
images is merely 64×64, the MLP model can be easily trained resulting in recognition accuracy up 
to 98.33%. 

Table 4 Recognition results of different denoising algorithms. 

Metrics Methods 
Noisy SNR 

9.1067 13.249 17.656 20.383 

Denoised SNR Improvement 
Wiener 67.95% 30.73% 10.99% 4.05% 

Kalman 108.66% 50.34% 18.93% 6.66% 
Wavelet 94.79% 66.17% 44.42% 34.48% 

Denoised Accuracy 

Noisy 78.83% 92.67% 97.17% 96.67% 
Wiener 97.33% 97.33% 97.67% 97.83% 
Kalman 97.33% 97.83% 97.67% 98.00% 
Wavelet 97.83% 98.50% 98.17% 98.33% 

As discussed, we added Gaussian noise on the test dataset and performed three denoising 
algorithms on the polluted images. Then the trained MLP model made prediction on the denoised 
images. The accuracy results are listed in table 4. From the results we can see that the three 
denoising algorithms can all recognize the face using the desnoised images, while the wavelet 
method has the highest recognition accuracy due to spatial-frequency analysis for face feature 
extraction, and better preservation of high frequency edges. Moreover, the wavelet denoising 
algorithm can improve the SNR dramatically in the case of high SNR.  

4. Conclusion 
Spatial-frequency wavelet decomposition method can effectively reduce the noise on the face 

images and better preserve high frequency contents related to edge and face features. The SNR of 
polluted images can also be improved significantly by wavelet filtering. Compared with Wiener 
filter and Kalman filter, wavelet decomposition can be implemented by a faster algorithm 
developed and proposed in this paper. Experimental results demonstrate that the denoising 
performance of spatial-frequency wavelet filter achieves higher recognition accuracy than the two 
filters in either the time or frequency domain. With a neural network (NN) model with multilayer 
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perceptron (MLP) trained, image face recognition by wavelet denoising can provide a high level of 
security and privacy protection. 
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